Housing breeding mice in three different IVC systems: maternal performance and pup development

Author:

Spangenberg EMF1,Wallenbeck A2,Eklöf A-C3,Carlstedt-Duke J4,Tjäder S1

Affiliation:

1. Comparative Medicine, Veterinary Services, Karolinska Institutet, Stockholm, Sweden

2. Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Uppsala, Sweden

3. Department of Comparative Medicine, Karolinska University Hospital, Stockholm, Sweden

4. Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden

Abstract

A proper cage environment is essential for the welfare of laboratory mice, especially for females during the energy demanding lactation period and for pups during early development and growth. The most common housing system for laboratory mice is individually ventilated cages (IVCs) of which there are different layouts and ventilation strategies available on the market. The present study investigates the impact of cage environment in three different IVC types, on the maternal performance of females, and pup development and growth in C57BL/6NCrl and Crl:NMRI Foxn1nu mice. The results show differences in in-cage climate, female body weight, pup growth, feed and water consumption, and nest quality between cage types. There was a distinct effect of genotype in these differences, with the main effects found in NMRI NU mice. The results indicate that IVC systems might need to be managed differently for mice of different types and/or different physiological status. Many of the differences seen between cage systems could be drawn to the physical construction of the cage, such as location of feed hopper and location of air inlet and outlet. In conclusion, IVC in-cage climate affects the maternal performance of female mice and pup growth, but with differences between the two strains tested.

Publisher

SAGE Publications

Subject

General Veterinary,Animal Science and Zoology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3