Evaluation of individually ventilated cage systems for laboratory rodents: cage environment and animal health aspects

Author:

Höglund A. U.1,Renström A.2

Affiliation:

1. Department of Physiology, Division for Comparative Medicine, Uppsala University, Uppsala, Sweden

2. Respiratory Health and Climate, National Institute for Working Life, Stockholm, Sweden

Abstract

The use of individually ventilated cage (IVC) systems has become an attractive housing regime of laboratory rodents. The benefits of IVC systems are, reportedly, a high degree of containment combined with relative ease of handling, and a high degree of protection from allergenes. In the present study we tested whether two IVC systems (BioZone VentiRack, IVC1 and Techniplast SealSafe, IVC2S), in which we held mature male NMRI mice, were constructed to maintain a constant differential pressure, positive or negative, during a prolonged period of time. We also measured ammonia (NH3) concentrations after about 2 weeks of use, and CO2 build-up during a 60 min simulated power failure situation. In addition, animal weight development and bite-wound frequency were recorded (Renström et al. 2000). From the present study it is concluded that the IVC1 air handling system provides a more uniform and balanced differential pressure than the IVC2S. Both systems effectively scavenge NH3 when bedding material is not soaked by urine. Although the IVCs are dependent on the continual function of the fans to work properly, it seems unlikely that CO2 concentrations increase to hazardous levels, as a result of a one hour power failure, with the type of cages used in this study. Differences in weight development and bite-wound occurrence were noted between the two IVC systems. Causes for these differences could not be established and need more investigation.

Publisher

SAGE Publications

Subject

General Veterinary,Animal Science and Zoology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of experimental mice husbandry microenvironment and animal health in individual ventilated cage (IVC);International Journal of Thermal Sciences;2024-07

2. Special housing arrangements;The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals;2024-03-14

3. Effects of housing conditions on stress, depressive like behavior and sensory-motor performances of C57BL/6 mice;Laboratory Animal Research;2024-02-18

4. Early Life Interventions: Impact on Aging and Longevity;Aging and disease;2024

5. Evaluation of Various IVC Systems According to Mouse Reproductive Performance and Husbandry and Environmental Parameters;Journal of the American Association for Laboratory Animal Science;2022-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3