Splicing Mutations in TP53 in Human Squamous Cell Carcinoma Lines Influence Immunohistochemical Detection

Author:

Eicheler Wolfgang1,Zips Daniel1,Dörfler Annegret1,Grénman Reidar2,Baumann Michael3

Affiliation:

1. Department of Radiotherapy and Radiation Oncology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany

2. Department of Otorhinolaryngology-Head and Neck Surgery and Department of Medical Biochemistry, Turku University, Turku, Finland

3. Experimental Center, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany

Abstract

The mutational status of the tumor suppressor gene TP53 is often examined by immunohistochemistry. We compared the incidence of TP53 mutations in 12 permanent squamous cell carcinoma lines of the head and neck with the immunohistochemical staining obtained with two different antibodies. The mutational status of the TP53 gene was assessed by sequencing the complete coding frame of the TP53 mRNA. All 12 tumor cell lines had TP53 mutations. Six of them showed missense mutations and five had premature stop codons caused either by splicing mutations or nonsense mutations or by exon skipping. One tumor cell line was heterozygous, with a truncating splicing mutation and an additional missense mutation located on different alleles. In one case, an in-frame insertion of 23 extra codons was found. All missense mutations were positive in immunhistochemistry and Western blotting. The truncated p53 was not immunohistochemically detected in three cases with the DO-7 antibody and in five cases with the G59–12 antibody, giving false-negative results in 25% or 40%, respectively, of all tumor cell lines examined. We conclude that splicing mutations are common in squamous cell carcinoma lines and that the incidence of p53 inactiviation by erroneous splicing is higher than yet reported. Sequencing of only the exons of TP53 may miss intronic mutations leading to missplicing and may therefore systematically underestimate the TP53 mutation frequency.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3