In Vivo Model for the Experimental Manipulation of Calcified Tissues: A Surgical Approach for Accessing the Odontogenic Organ and Associated Tissues of the Rat Incisor

Author:

Vu D.-D.1,Daniel N.G.1,Nanci A.1

Affiliation:

1. Faculty of Dentistry, Université de Montréal, Montreal, Québec, Canada

Abstract

The tooth organ is extensively used in developmental biology to investigate organogenesis and cell differentiation. It also represents an advantageous system for the study of the various cellular and extracellular matrix events that regulate the formation of both collagenous and noncollagenous calcified tissues. This article describes an in vivo surgical approach to access and experimentally manipulate the tooth organ and supporting tissues of the rat incisor. By use of a dental drill, a “window” was created through the alveolar bone on the buccal aspect of the hemimandible at the apical end of the incisor. It is at this site that epithelial and mesenchymal precursors are situated and undergo cellular differentiation to give rise to cells of the odontogenic organ. Active bone remodeling is also observed in this area to accommodate posterior growth of the tooth. An osmotic minipump connected to the bony window through an outlet catheter was used for controlled and continuous administration of experimental agents over a predetermined period of time. To validate the model, vinblastine sulfate, fetuin-gold, and dinitrophenylated albumin were thus infused. The animals were then sacrificed and the hemimandibles were processed for histological and immunocytochemical analyses. The effects of the drug and the presence of tracers were restricted to the treated hemimandible and were found in the enamel organ and pulp, as well as in the tooth supporting tissues. Cellular changes typically associated with the administration of vinblastine were obtained, and tracers were localized both in the extracellular milieu and within the endosomal/lysosomal elements of cells. These results suggest that this new surgical approach could serve as an advantageous in vivo model in which various chemical agents, therapeutic drugs, molecular probes are locally administered to study the molecular events that regulate calcified tissue formation.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3