In Vivo Functional Analysis of Polyglutamic Acid Domains in Recombinant Bone Sialoprotein

Author:

Wazen Rima M.1,Tye Coralee E.2,Goldberg Harvey A.2,Hunter Graeme K.2,Smith Charles E.1,Nanci Antonio1

Affiliation:

1. Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dentistry, Université de Montréal, Montreal, Quebec, Canada

2. CIHR Group in Skeletal Development and Remodeling, School of Dentistry, University of Western Ontario, London, Ontario, Canada

Abstract

Bone sialoprotein (BSP) is an anionic phosphoprotein expressed in mineralizing connective tissues that binds to hydroxyapatite and nucleates its formation in vitro. Two polyglutamic acid regions (poly [E]) are believed to participate in these activities. The aim of this study was to evaluate the contribution of these acidic regions to the binding of prokaryote recombinant BSP (prBSPE) within an actual in vivo environment. Full-length prBSPE and prBSPE in which the poly [E] domains were replaced by polyalanine (prBSPA) were tagged with dinitrophenol (DNP). Tagged preparations comprised intact molecules and some fragmented forms. They were infused through a surgically created hole in the bone of rat hemimandibles and detected using immunogold labeling with anti-DNP antibodies. prBSPE-DNP was consistently immunodetected along exposed mineralized bone surfaces and osteocyte canaliculi at the surgical site. Few gold particles were observed on these surfaces when prBSPA-DNP was infused. Quantitative analyses showed significant differences in labeling between prBSPE-DNP (5.04 ± 0.73 particles/μm2) and prBSPA-DNP (1.37 ± 0.35 particles/μm2). These results indicate that poly [E] domains influence binding of prBSPE to surfaces presenting a mixture of mineral and proteins bathed by tissue fluids and suggest that they may similarly mediate the interaction of native BSP in the bone environment.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3