A Novel Online Nomogram Established with Five Features before Surgical Resection for Predicating Prognosis of Neuroblastoma Children: A Population-Based Study

Author:

Zhou Yu12,Gao Jing12ORCID

Affiliation:

1. Department of Child Rehabilitation Division, Huai’an Maternal and Child Health Care Center, Huai’an, China

2. Affiliated Hospital of Yang Zhou University Medical College Huai’an Maternal and Child Health Care Center, Huai’an, China

Abstract

Background: Neuroblastoma (NB) is the most common childhood cancer, but doctors are unable to predict its overall survival (OS) rate before surgery. We aimed to predict the OS of NB children with some clinical features obtained from biopsy before surgery. Methods: Clinical features of NB children were retrospectively collected from the Therapeutically Applicable Research to Generate Effective Treatments database. The C-index, area under the receiver operating characteristic curve (AUC), calibration curves, and decision curves analysis were used to estimate nomogram models. Results: A total of 488 NB children were evaluated, and the Boruta algorithm was used to detect risk factors. The results showed that artificial neural networks with selected features were able to predict more than 90% of NB children. Five risk factors were used in the construction of the nomogram, including age at diagnosis, MYCN status, ploidy value, histology, and mitosis-karyorrhexis index (MKI). The C-index of the nomogram in training cohort and validation cohort was 0.716 and 0.731. AUC values for 1-, 3-, and 5-years OS predictions were 0.706, 0.755, and 0.762, respectively, and showed good calibrations. Decision curve analysis indicated a better predictability with the nomogram model based on Cox regression compared with one that included all variables and histology only. Also, the Kaplan–Meier curves showed a significantly higher survival probability in the low-risk group (total score <118.34) versus the high-risk group (total score ≥ 118.34) ( p < 0.05) using the nomogram model. Conclusions: A web application based on the nomogram model in the present study can be accessed at https://mdzhou.shinyapps.io/DynNomapp/ , which could help doctors make accurate clinical decisions about NB children.

Funder

Huai’an Science and Technology Plan Project

The Plan of Innovation Capacity Building and Key Laboratory Construction of Science and Technology Bureau

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3