Affiliation:
1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
Abstract
An electroactive nitrogen-doping tin dioxide nanorod array (N-SnO2 NRA) is designed as an effective energy-storage electrode material for supercapacitor applications. N-SnO2 supported on a carbon fiber substrate is prepared using SnCl4 as a precursor through hydrolysis, hydrothermal growth, and an NH3-nitriding process. Electroactive N-SnO2 is formed by an N-doping reaction between Sn(OH)4 and NH3, revealing a high nitrogen-doping level of 12.5% in N-SnO2. N-SnO2/carbon fiber reveals a lower ohmic resistance and charge transfer resistance than SnO2/carbon fiber, which is consistent with its higher current response and lower voltage drop in electrochemical measurements. N-SnO2 NRA has an independent nanoarray structure and a small side length of a quadrangular nanorod, contributing to a more accessible interspace, reactive sites, and feasible electrolyte ion diffusion. The N-SnO2/carbon fiber NRA electrode shows higher specific capacitance (105.4 F g−1 at 0.5 A g−1) and rate capacitance retention (45.0% from 0.5 to 5 A g−1) than a SnO2/carbon fiber NRA electrode (58.6 F g−1, 38.4%). Significantly, the cycling capacitance retention after 2000 cycles increases from 78.1% of SnO2/carbon fiber to 98.8% of N-SnO2/carbon fiber, presenting a superior electrochemical cycling stability. The N-SnO2 supercapacitor maintains stable power working at an output voltage of 1.6 V. The specific capacitance decreases from 75.2 to 55.1 F g−1 when the current density increases from 1 to 10 A g−1. The corresponding energy density decreases from 24.23 to 9.81 Wh kg−1, presenting a reasonable rate capability. So, the prepared N-SnO2 nanorod array demonstrates superior capacitance performance for energy-storage applications.
Funder
fundamental research funds for the central universities
priority academic program development of jiangsu higher education institutions
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献