Capacitive Performance of Reduced Graphene Oxide Modified Sodium Ion-Intercalated Manganese Oxide Composite Electrode

Author:

Xie Yibing1

Affiliation:

1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China

Abstract

Abstract The reduced graphene oxide modified sodium ion-intercalated manganese oxide (RGO-NaxMnO2) is designed as a supercapacitor electrode material. The layered intercalation compound NaxMnO2 is prepared through a solid-state reaction process. RGO-NaxMnO2 is then formed by the chemical reduction of graphene oxide coated NaxMnO2 through a hydrothermal process. RGO-NaxMnO2 is supported on the substrate of nickel form (NF) and titanium nitride (TiN) to form RGO-NaxMnO2/NF and RGO-NaxMnO2/TiN composite electrodes. NaxMnO2 has a particle aggregate structure with the individual particle size of 1–2 µm. RGO-NaxMnO2 composite shows the densely packed arrangement of particles with the particle aggregate size of 8 µm. RGO modification can well improve the electrical conductivity of RGO-NaxMnO2. The current response is highly enhanced from 0.127 A g−1 for NaxMnO2/NF to 0.372 A g−1 for RGO-NaxMnO2/NF at 2 mV s−1. Furthermore, the TiN substrate with superior electrical conductivity and electrochemical anti-corrosion contributes to improving the electrochemical capacitance and cycle stability of RGO-NaxMnO2. RGO-NaxMnO2/TiN reveals higher specific capacitance (244.2 F g−1 at 2.0 A g−1) and higher cycling capacitance retention (99.7%) after 500 cycles at 2.0 A g−1 than RGO-NaxMnO2/NF (177.1 F g−1, 43.6%). So, RGO-NaxMnO2/TiN exhibits much higher capacitive performance than RGO-NaxMnO2/NF, which presents a potential application for electrochemical energy storage.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3