Expectile and quantile regression—David and Goliath?

Author:

Waltrup Linda Schulze1,Sobotka Fabian2,Kneib Thomas2,Kauermann Göran1

Affiliation:

1. Ludwig-Maximilians-Universität Munich, Germany

2. Georg-August-Universität Göttingen, Germany

Abstract

Recent interest in modern regression modelling has focused on extending available (mean) regression models by describing more general properties of the response distribution. An alternative approach is quantile regression where regression effects on the conditional quantile function of the response are assumed. While quantile regression can be seen as a generalization of median regression, expectiles as alternative are a generalized form of mean regression. Generally, quantiles provide a natural interpretation even beyond the 0.5 quantile, the median. A comparable simple interpretation is not available for expectiles beyond the 0.5 expectile, the mean. Nonetheless, expectiles have some interesting properties, some of which are discussed in this article. We contrast the two approaches and show how to get quantiles from a fine grid of expectiles. We compare such quantiles from expectiles with direct quantile estimates regarding efficiency. We also look at regression problems where both quantile and expectile curves have the undesirable property that neighbouring curves may cross each other. We propose a modified method to estimate non-crossing expectile curves based on splines. In an application, we look at the expected shortfall, a risk measure used in finance, which requires both expectiles and quantiles for estimation and which can be calculated easily with the proposed methods in the article.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3