Boosting for statistical modelling-A non-technical introduction

Author:

Mayr Andreas12,Hofner Benjamin3

Affiliation:

1. Institut für Statistik, Ludwig-Maxilians-Universität, München, Germany.

2. Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

3. Paul-Ehrlich-Institut, Langen, Germany.

Abstract

Boosting algorithms were originally developed for machine learning but were later adapted to estimate statistical models—offering various practical advantages such as automated variable selection and implicit regularization of effect estimates. The interpretation of the resulting models, however, remains the same as if they had been fitted by classical methods. Boosting, hence, allows to use an advanced machine learning scheme to estimate various types of statistical models. This tutorial aims to highlight how boosting can be used for semi-parametric modelling, what practical implications follow from the design of the algorithm and what kind of drawbacks data analysts have to expect. We illustrate the application of boosting in the analysis of a stunting score from children in India and a high-dimensional dataset of tumour DNA to develop a biomarker for the occurrence of metastases in breast cancer patients.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3