Component-based regularization of a multivariate GLM with a thematic partitioning of the explanatory variables

Author:

Bry Xavier1,Trottier Catherine12,Mortier Frédéric3,Cornu Guillaume3

Affiliation:

1. Institut Montpelliérain Alexander Grothendieck, Université Montpellier, CNRS, Montpellier, France.

2. Université Paul-Valéry Montpellier, Montpellier, France.

3. Forêts et Sociétés, Université Montpellier, Cirad, Montpellier, France.

Abstract

We address component-based regularization of a multivariate generalized linear model (GLM). A vector of random responses [Formula: see text] is assumed to depend, through a GLM, on a set [Formula: see text] of explanatory variables, as well as on a set [Formula: see text] of additional covariates. [Formula: see text] is partitioned into [Formula: see text] conceptually homogenous variable groups [Formula: see text], viewed as explanatory themes. Variables in each [Formula: see text] are assumed many and redundant. Thus, generalized linear regression demands dimension reduction and regularization with respect to each [Formula: see text]. By contrast, variables in [Formula: see text] are assumed few and selected so as to demand no regularization. Regularization is performed searching each [Formula: see text] for an appropriate number of orthogonal components that both contribute to model [Formula: see text] and capture relevant structural information in [Formula: see text]. To estimate a single-theme model, we first propose an enhanced version of Supervised Component Generalized Linear Regression (SCGLR), based on a flexible measure of structural relevance of components, and able to deal with mixed-type explanatory variables. Then, to estimate the multiple-theme model, we develop an algorithm encapsulating this enhanced SCGLR: THEME-SCGLR. The method is tested on simulated data and then applied to rainforest data in order to model the abundance of tree species.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3