Response mixture models based on supervised components: Clustering floristic taxa

Author:

Gibaud Julien1,Bry Xavier1,Trottier Catherine12,Mortier Frédéric34,Réjou-Méchain Maxime5

Affiliation:

1. Institut Montpelliérain Alexander Grothendieck, CNRS, Université de Montpellier, France

2. AMIS, Université Paul-Valéry Montpellier 3, Montpellier, France

3. CIRAD, Forêts et Sociétés, Montpellier, France

4. Forêts et Sociétés, Université de Montpellier, CIRAD, Montpellier, France

5. AMAP, Université de Montpellier, IRD, CNRS, CIRAD, INRAE, Montpellier, France

Abstract

In this article, we propose to cluster responses in order to identify groups predicted by specific explanatory components. A response matrix is assumed to depend on a set of explanatory variables and a set of additional covariates. Explanatory variables are supposed many and redundant, which implies some dimension reduction and regularization. By contrast, additional covariates contain few selected variables which are forced into the regression model, as they demand no regularization. The response matrix is assumed partitioned into several unknown groups of responses. We suppose that the responses in each group are predictable from an appropriate number of specific orthogonal supervised components of explanatory variables. The classification is based on a mixture model of the responses. To estimate the model, we propose a criterion extending that of Supervised Component-based Generalized Linear Regression, a Partial Least Squares-type method, and develop an algorithm combining component-based model and Expectation Maximization estimation. This new methodology is tested on simulated data and then applied to a floristic ecology dataset.

Publisher

SAGE Publications

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3