Marangoni convection of γ-Al2O3-water/ethylene glycol nanofluids with the inclusion of nonlinear thermal radiation

Author:

Mathur Priya1ORCID,Mishra Satyaranjan2ORCID,Pattnaik Pradyumna Kumar3ORCID

Affiliation:

1. Department of Mathematics, Poornima College of Engineering & Technology, Jaipur, Rajasthan, India

2. Department of Mathematics, Siksha “O” Anusandhan Deemed to be University, Bhubaneswar, Odisha, India

3. Department of Mathematics, College of Engineering Technology, Bhubaneswar, Odisha, India

Abstract

The current study used convective heat transfer properties to investigate the Marangoni convection flow of oxide particles within water and ethylene glycol past a linearly expanding sheet. The flow characteristic is enhanced by the inclusion of nonlinear thermal radiation in the heat transfer phenomenon. The model is properly designed in conjunction with the appropriate assumption of the effective properties of the nanofluid, such as viscosity, conductivity, and the Prandtl number, among others. However, the flow analysis of γ− Al2 O3 nanofluid embedding with the permeable medium affects the behavior of the contributing parameters. The non-dimensional forms of the governing equations designed with the above-mentioned properties are obtained by selecting the appropriate similarity transformation. Furthermore, the Runge–Kutta–Fehlberg numerical method is used to solve these sets of formulated problems from case studies. The flow domain’s behavior when several relevant parameters are varied is depicted graphically and briefly described. However, the major contributions are; inclusion of particle concentration accelerates the nanofluid temperature whereas the fluid velocity decelerates near the sheet region, and further it shows its opposite impact. The resistance offered by the permeability of the porous medium attenuates the fluid velocity significantly.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3