Radiation absorption impact on the thermophysical properties of Cu- and TiO2-water nanofluids: Laplace transform technique

Author:

Sharma Ram Prakash1,Mishra S. R.2ORCID,Panda G. K.3

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Arunachal Pradesh, Jote, Papum Pare District, Arunachal Pradesh 791113, India

2. Department of Mathematics, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, Odisha 751030, India

3. Department of Basic & Applied Science, National Institute of Technology, Jote, Papum Pare District, Arunachal Pradesh 791113, India

Abstract

An electrically conducting time-dependent flow of water-based nanofluid comprised of Copper and Titanium oxide over a stationary plate embedding with a porous matrix is analyzed in this study. The novelty arises due to the interaction of both the thermal radiation as well as the radiation absorption that affect the heat transport phenomenon. In the single-phase flow, both the variation of particle concentration and the solutal concentration for the inclusion of chemical reaction are taken care of. Also, the influence of the free convection phenomena is explained significantly. The transformed dimensionless system of the governing equations is handled analytically by using the Laplace Transform method. The behavior of the characterizing parameters involved in the governing equations is presented via graphs and the simulation of the numerical results of the rate coefficients like shear rate and rate of heat and solutal transfer is deployed through the table. However, the physical significance of these parameters is deliberated briefly. Finally, the important outcomes are higher heavier species because of lesser solutal diffusivity which attenuates the fluid concentration throughout the domain. Further, radiation absorption causes a significant boost in the nanofluid temperature distribution.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3