Affiliation:
1. Department of Mechanical Engineering, Center of Research on High Performance Polymers and Composites, École Polytechnique de Montréal, Campus de l’Université de Montréal, Montreal, QC, Canada
Abstract
A new in situ monitoring strategy is proposed to study void formation during real-time impregnation of dual-scale fibrous reinforcements in liquid composite molding. Void content data from burn-off tests are used to calibrate a refractive index matching approach based on two optical principles: Beer–Lambert and Fresnel laws. Once calibrated, this approach based on visible light transmission is used to study the impact of key process parameters on the saturation footprint of dual-scale fibrous reinforcements during and after mold filling. The injection parameters investigated are the flow front velocity, the pressure distribution inside the mold cavity, the bleeding flow rate, and the mold packing pressure. The experimental setup is a computer-assisted injection system and a transparent resin transfer molding mold is used to perform unidirectional injections. A vinyl ester resin is injected through E-glass bidirectional non-crimp fabrics under various manufacturing conditions. This investigation not only confirms the decreasing trend in void formation by mechanical entrapment of air with the decrease in impregnation velocity, as it converges toward the optimal impregnation conditions for this fibrous reinforcement reported in previous studies, but it also brings insights on void dissolution and transport in liquid composite molding.
Subject
Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献