Capillary Effects in Fiber Reinforced Polymer Composite Processing: A Review

Author:

Teixidó Helena,Staal Jeroen,Caglar Baris,Michaud Véronique

Abstract

Capillarity plays a crucial role in many natural and engineered systems, ranging from nutrient delivery in plants to functional textiles for wear comfort or thermal heat pipes for heat dissipation. Unlike nano- or microfluidic systems with well-defined pore network geometries and well-understood capillary flow, fiber textiles or preforms used in composite structures exhibit highly anisotropic pore networks that span from micron scale pores between fibers to millimeter scale pores between fiber yarns that are woven or stitched into a textile preform. Owing to the nature of the composite manufacturing processes, capillary action taking place in the complex network is usually coupled with hydrodynamics as well as the (chemo) rheology of the polymer matrices; these phenomena are known to play a crucial role in producing high quality composites. Despite its importance, the role of capillary effects in composite processing largely remained overlooked. Their magnitude is indeed rather low as compared to hydrodynamic effects, and it is difficult to characterize them due to a lack of adequate monitoring techniques to capture the time and spatial scale on which the capillary effects take place. There is a renewed interest in this topic, due to a combination of increasing demand for high performance composites and recent advances in experimental techniques as well as numerical modeling methods. The present review covers the developments in the identification, measurement and exploitation of capillary effects in composite manufacturing. A special focus is placed on Liquid Composite Molding processes, where a dry stack is impregnated with a low viscosity thermoset resin mainly via in-plane flow, thus exacerbating the capillary effects within the anisotropic pore network of the reinforcements. Experimental techniques to investigate the capillary effects and their evolution from post-mortem analyses to in-situ/rapid techniques compatible with both translucent and non-translucent reinforcements are reviewed. Approaches to control and enhance the capillary effects for improving composite quality are then introduced. This is complemented by a survey of numerical techniques to incorporate capillary effects in process simulation, material characterization and by the remaining challenges in the study of capillary effects in composite manufacturing.

Funder

Schweizerischer Nationalfonds Zur Förderung der Wissenschaftlichen Forschung

Publisher

Frontiers Media SA

Subject

Materials Science (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3