Investigation of residual stresses induced by composite forming using macro-micro simulation

Author:

Wu Qi12ORCID,Yoshikawa Nobuhiro1,Morita Naoki1,Ogasawara Tomotaka1

Affiliation:

1. Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

2. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

As the thickness of a composite differs significantly from the size of a representative volume element, composite is studied at both micro- and macroscales. In this study, the synergy between the prescribed displacement boundary and massively parallel computing enables end users to model a composite described in the micro-meter scale and take into account the global influence of the forming process. After validating the software and material models, the residual stresses of a sandwich thermoplastic composite caused by the dynamic thermomechanical forming process were simulated. The results of the macro-micro simulation revealed that the micro structure of a composite consisting of continuous carbon fiber and thermoplastic that have significantly different material properties has a weak impact on temperature distribution throughout the thickness, but exerts a significant influence on the distribution of in-plane stresses. The stresses within a representative volume element at the top and bottom surfaces of the composite layer were further studied to explain the effect of the temperature gradient on the simulated stresses along with the axial and transverse directions of the fiber. The results of this study provide a practical method to reveal actual residual stresses feasibly and efficiently.

Funder

MEXT: Priority Issue on post-K computer

grant from China State Key Laboratory of Mechanics and Control of Mechanical Structures

RIKEN Advanced Institute for Computational Science through the HPCI System Research project

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3