A Microscale Analysis of Thermal Residual Stresses in Composites with Different Ply Orientations

Author:

Wang Yanfeng1ORCID,Wu Qi12ORCID

Affiliation:

1. State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, China

2. Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Abstract

Composites, such as fiber-reinforced plastics, are produced using layering prepregs with varying ply orientations to achieve enhanced mechanical properties. However, this results in intricate residual stresses, which are influenced by the forming process and ply orientation. In this study, three representative microscopic models—featuring discrete fiber and resin—represent unidirectional, cross-ply, and angle-ply laminates. These models underwent simulations under three different cooling histories using the finite element method. The findings suggest that ply orientation does not significantly influence temperature distribution. However, it significantly impacts the von Mises stress in the fiber closest to the interface between two stacked laminae. This differs from the inter-laminar stresses determined with the macroscopic lamination model. Apart from the free edge, which exhibits a complex stress distribution, the von Mises stress within a unit cell displays a recurring pattern. The magnitude of the von Mises stress decreases as the ply orientation angle increases and shifts when a temperature gradient is present throughout the composite’s thickness. This study provides valuable insights into the mechanics of residual stresses at the microscopic level and highlights potential defect areas influenced by these stresses.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3