Affiliation:
1. Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA)—Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
Abstract
The present study aims to experimentally validate numerical simulation of fiber orientation distribution performed by molding simulation software Moldex3D in a double-gated injection-molded glass fiber-filled (40 wt%) polypropylene box, by making a detailed comparison of predicted and experimentally measured fiber orientation distribution data. The modeling approach evaluated in this work consists in the implementation of the Folgar–Tucker rotary diffusion model with the invariant-based optimal fitting closure approximation for the fourth-order orientation tensor. The specimen used has a weld line in the center and sharp corners. This investigation characterizes in detail the development of the through-thickness layered structure at distinctive locations of the specimen. The sensitivity of fiber orientation distribution and the layered structure to changes upon injection time and melt temperature is also evaluated. The boxes display the typical layered laminate structure, with fibers aligned in the main flow direction near the walls (shell layer) and less oriented in the middle plane (core layer). The boxes injected at the lowest melt temperature display an additional skin layer. Unfortunately, simulation fails in predicting the five layers structure developed under these latter conditions. The grade of fiber orientation is deemed to be independent of process parameters but not the layered structure.
Funder
National Agency for Science and Technology Promotion of Argentina
Subject
Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献