An improved path discretization method for automated fiber placement

Author:

He Ruming12ORCID,Qu Weiwei12,Ke Yinglin12

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic System, College of Mechanical Engineering, Zhejiang University, Hangzhou, China

2. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, China

Abstract

In the automated fiber placement process, the continuous placement paths need to be discretized into a finite number of path points because the laying head cannot continuously trace the predetermined curved path. However, the discretization of the placement path, which is a spatial curve, will inevitably introduce error. In this paper, an improved path discretization algorithm is proposed for the fiber placement of complex double-curved structures. Firstly, the discrete error was decomposed into normal direction and binormal direction, and they are correlated with the laying process and their influences on the laying quality are discussed, respectively. Secondly, the relationship between the binormal error and the overlap of the tow is analyzed with differential geometry, and the influence of the normal error on laying force is discussed by the pressure experiment and the finite element method. Finally, the improved path discretization algorithm has been verified on double-curved surface and compared with the traditional path discrete algorithms. The results showed that the number of discrete path points decreases by 45.8% on average compared with the chordal deviation discretization algorithm and by 63.1% compared with the equal-arc discretization algorithm.

Funder

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3