Finite element method coupled with TLBO for shape control optimization of piezoelectric bimorph in COMSOL Multiphysics

Author:

Sumit 12,Shukla Rahul12ORCID,Sinha A K12

Affiliation:

1. Synchrotrons Utilization Section, Raja Ramanna Centre for Advanced Technology, Indore, India

2. Homi Bhabha National Institute, Anushaktinagar, Mumbai, India

Abstract

Finite element methods (FEMs) are more advantageous for analyzing complex geometry and structures than analytical methods. Local search optimization techniques are suitable for the unimodal problem because final result depends on the starting point. On the other hand, to optimize the parameters of multi-minima/maxima problems, global optimization-based FEM is used. Unfortunately, global optimization solvers are not present in, COMSOL Multiphysics, a versatile tool for solving varieties of problems using FEM. Teaching–learning-based optimization (TLBO) is a global optimization technique and does not require any algorithm-specific parameter. In this paper, FEM is coupled with TLBO algorithms in COMSOL Multiphysics for solving the global optimization problem. The TLBO algorithm is implemented in COMSOL Multiphysics using the JAVA application programming interface and tested with the standard benchmark functions. The solutions of the standard benchmark problem in COMSOL Multiphysics are in close agreement with the results presented in literature. Furthermore, the optimization procedure thus established is used for the optimization of actuator voltage for piezoelectric bimorphs to achieve the desired shapes. The FEM-based TLBO method is compared with two optimization methods present in COMSOL Multiphysics for a shape control problem; (i) method of moving asymptotes (MMA) and (ii) Bound Optimization BY Quadratic Approximation (BOBYQA). The root mean square error shows that the FEM-based TLBO algorithm converges to a global minimum and gives the same result (19.3 nm) at multiple runs, whereas MMA and BOBYQA trapped in local minimum and gave different results for different starting points.

Funder

department of atomic energy, government of india

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3