An extensible modeling methodology for embedded and cyber-physical system design

Author:

Attarzadeh-Niaki Seyed-Hosein1,Sander Ingo2

Affiliation:

1. Shahid Beheshti University, Iran

2. KTH Royal Institute of Technology, Sweden

Abstract

Abstract models are important tools to manage the increasing complexity of system design. The choice of a modeling language for constructing models governs what types of systems can be modeled, and which subsequent design activities can be performed. This is especially true for the area of embedded electronic and cyber-physical system design, which poses several challenging requirements of modeling and design methodologies. This article argues that the Formal System Design (ForSyDe) methodology with the necessary presented extensions fulfills these requirements, and thus qualifies for the design of tomorrow’s systems. Based on the theory of models of computation and the concept of process constructors, heterogeneous models are captured in ForSyDe with formal semantics. A refined layer of the formalism is introduced to make its denotational-style semantics easy to implement on top of commonly used imperative languages, and an open-source realization on top of the IEEE standard language SystemC is presented. The introspection mechanism is introduced to automatically export an intermediate representation of the constructed models for further analysis/synthesis by external tools. Flexibility and extensibility of ForSyDe is emphasized by integrating a new timed model of computation without central synchronization, and by providing mechanisms for integrating foreign models, parallel and distributed simulation, modeling adaptive, data-parallel, and non-deterministic systems. A set of ForSyDe features is demonstrated in practice, and compared with similar approaches using a running example and two relevant case studies.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3