Fitness-scaling adaptive genetic algorithm with local search for solving the Multiple Depot Vehicle Routing Problem

Author:

Wang Shuihua123,Lu Zeyuan4,Wei Ling5,Ji Genlin1,Yang Jiquan3

Affiliation:

1. School of Computer Science and Technology, Nanjing Normal University, China

2. School of Electronic Science and Engineering, Nanjing University, China

3. Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, China

4. Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, China

5. School of Electronic Information & Electrical Engineering, Shanghai Jiaotong University, China

Abstract

The multi-depot vehicle routing problem is a well-known non-deterministic polynomial-time hard combinatorial optimization problem, which is crucial for transportation and logistics systems. We proposed a novel fitness-scaling adaptive genetic algorithm with local search (FISAGALS). The fitness-scaling technique converts the raw fitness value to a new value that is suitable for selection. The adaptive rates strategy changes the crossover and mutation probabilities depending on the fitness value. The local search mechanism exploits the problem space in a more efficient way. The experiments employed 33 benchmark problems. Results showed the proposed FISAGALS is superior to the standard genetic algorithm, simulated annealing, tabu search, and particle swarm optimization in terms of success instances and computation time. Furthermore, FISAGALS performs better than parallel iterated tabu search (PITS) and fuzzy logic guided genetic algorithm (FLGA), and marginally worse than ILS-RVND-SP in terms of the maximum gap. It performs faster than PITS and ILS-RVND-SP (a combination of iterated local search framework [ILS], a variable neighborhood descent with random neighborhood ordering [RVND] and the the set partitioning [SP] model) and slower than FLGA. In summary, FISAGALS is a competitive method with state-of-the-art algorithms.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3