Deep reinforcement learning algorithm for solving material emergency dispatching problem

Author:

Jiang Huawei,Guo Tao,Yang Zhen,Zhao Like

Abstract

<abstract> <p>In order to solve the problem that the scheduling scheme cannot be updated in real time due to the dynamic change of node demand in material emergency dispatching, this article proposes a dynamic attention model based on improved gated recurrent unit. The dynamic codec framework is used to track the change of node demand to update the node information. The improved gated recurrent unit is embedded between codecs to improve the representation ability of the model. By weighted combination of the node information of the previous time, the current time and the initial time, a more representative node embedding is obtained. The results show that compared with the elitism-based immigrants ant colony optimization algorithm, the solution quality of the proposed model was improved by 27.89, 27.94, 28.09 and 28.12% when the problem scale is 10, 20, 50 and 100, respectively, which can effectively deal with the instability caused by the change of node demand, so as to minimize the cost of material distribution.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3