Brain tumor diagnosis based on discrete wavelet transform, gray-level co-occurrence matrix, and optimal deep belief network

Author:

Xu Li1,Gao Qi1,Yousefi Nasser2ORCID

Affiliation:

1. Department of Computer Science and Technology, Baotou Medical College, Inner Mongolia Baotou, People’s Republic of China

2. Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran

Abstract

Brain tumors are a group of cancers that originate from different cells of the central nervous system or cancers of other tissues in the brain. Excessive cell growth in the brain is called a tumor. Tumor cells need food and blood to survive. Growth and proliferation of tumor cells in the cranial space, cause strain inside the brain and thus disrupt vital human structures. Therefore, diagnosis in the early stages of brain tumors is crucial. This study introduces a new optimized method for early diagnosis of the brain tumor. The method has five main parts of noise reduction, tumor segmentation, morphology, feature extraction based on wavelet and gray-level co-occurrence matrix, and classification based on an optimized deep belief network. For optimizing the classifier network, an enhanced version of the moth search algorithm is utilized. Simulation results are applied to three different datasets, FLAIR, T1, and T2, and the accuracy results of the presented method are compared with two other metaheuristics, particle swarm optimization and Bat algorithms. The final results showed that the presented technique has good achievements toward the compared methods.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3