Affiliation:
1. Department of Computer Science and Technology, Baotou Medical College, Inner Mongolia Baotou, People’s Republic of China
2. Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
Abstract
Brain tumors are a group of cancers that originate from different cells of the central nervous system or cancers of other tissues in the brain. Excessive cell growth in the brain is called a tumor. Tumor cells need food and blood to survive. Growth and proliferation of tumor cells in the cranial space, cause strain inside the brain and thus disrupt vital human structures. Therefore, diagnosis in the early stages of brain tumors is crucial. This study introduces a new optimized method for early diagnosis of the brain tumor. The method has five main parts of noise reduction, tumor segmentation, morphology, feature extraction based on wavelet and gray-level co-occurrence matrix, and classification based on an optimized deep belief network. For optimizing the classifier network, an enhanced version of the moth search algorithm is utilized. Simulation results are applied to three different datasets, FLAIR, T1, and T2, and the accuracy results of the presented method are compared with two other metaheuristics, particle swarm optimization and Bat algorithms. The final results showed that the presented technique has good achievements toward the compared methods.
Subject
Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献