A formal mathematical framework for modeling and simulation of wireless sensor network environments utilizing the hill-building behavior of termites

Author:

Zungeru Adamu Murtala1,Ang Li-Minn2,Seng Kah Phooi3

Affiliation:

1. School of Electrical and Electronic Engineering, University of Nottingham, Semenyih, Selangor Darul Ehsan, Malaysia

2. School of Engineering, Edith Cowan University, Joondalup, Australia

3. School of Computer Technology, Sunway University, Petaling Jaya, Selangor, Malaysia

Abstract

The current practice in modeling and simulation of wireless sensor network (WSN) environments is to develop functional WSN systems for event gathering and optimize the necessary performance metric using heuristics and intuition. The evaluation and validation of the WSN system is mostly done using simulation approaches and practical implementations. Simulation studies, despite their wide use and merits for network systems and algorithms validation, have some drawbacks such as long simulation times, and some results reported by several prominent protocols cannot be repeated and are inconsistent. We, therefore, argue that simulation-based validation of WSN systems and environments should be further strengthened through mathematical analysis. To this end, we developed our modeling framework based on energy consumption for WSN topology and information extraction in a grid-based and line-based, randomly distributed sensor network. We strengthen the work with a model of the mobility impact on routing energy consumption by deriving the expected energy consumption of an agent-based reactive routing protocol for a WSN system as a function of packet arrival rate and topology change rate, using a termite hill routing algorithm. The results of our mathematical analysis were also compared with the simulation results.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3