QMAEA: A quantum multi-agent evolutionary algorithm for multi-objective combinatorial optimization

Author:

Tao F1,Laili Y J1,Zhang L1,Zhang Z H1,Nee AY C2

Affiliation:

1. School of Automation Science and Electrical Engineering, Beihang University, China

2. Department of Mechanical Engineering, National University of Singapore, Singapore

Abstract

Multi-objective combinatorial optimization (MOCO) is an essential concern for the implementation of large-scale distributed modeling and simulation (MS) system. It is more complex than general computing systems, with higher dynamics and stricter demands on real-time performance. The quality and speed of the optimal decision directly decides the efficiency of the simulation. However, few works have been carried out for multi-objective combinatorial optimization MOCO especially in large-scale and service-oriented distributed simulation systems (SoDSSs). The existing algorithms for MOCO in SoDSSs are far from enough owing to their low accuracy or long decision time. To overcome this bottleneck, in this paper, a quantum multi-agent evolutionary algorithm (QMAEA), for addressing MOCO in large-scale SoDSSs is proposed. In QMAEA, the concept and characteristics of agent and quantum encoding are introduced for high intelligent searching. Each agent represented by a quantum bit, called a quantum agent (QAgent), is defined as a candidate solution for a MOCO problem, and each QAgent is assigned an energy, which denotes the fitness or objective function value of the candidate solution represented by it. Each QAgent is connected by four other QAgents nearby, and all QAgents are organized by an annular grid, called a multi-agent grid (MAG). In a MAG system, the population of QAgents can reproduce, perish, compete for survival, observe and communicate with the environment, and make all their decisions autonomously. Several operators, i.e. energy-evaluation-operator, competition-operator, crossover-operator, mutation-operator and trimming-operator, are designed to specify the evolvement of the MAG. The theory of predatory search strategy of animals is introduced in the evolution of QMAEA. Multiple evolutionary strategies, such as local-evolution-strategy, local-mutation-strategy and global-mutation-strategy are designed and used to balance the exploration (global search ability) and the exploitation (local search ability) of QMAEA. The framework and procedures of QMAEA are presented in detail. The simulation and comparison results demonstrate the proposed method is very effective and efficient for addressing MOCO in SoDSSs.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3