A multi-objective multi-agent optimization algorithm for the multi-skill resource-constrained project scheduling problem with transfer times

Author:

Hosseinian Amir Hossein,Baradaran VahidORCID

Abstract

This paper addresses the Multi-Skill Resource-Constrained Project Scheduling Problem with Transfer Times (MSRCPSP-TT). A new model has been developed that incorporates the presence of transfer times within the multi-skill RCPSP. The proposed model aims to minimize project’s duration and cost, concurrently. The MSRCPSP-TT is an NP-hard problem; therefore, a Multi-Objective Multi-Agent Optimization Algorithm (MOMAOA) is proposed to acquire feasible schedules. In the proposed algorithm, each agent represents a feasible solution that works with other agents in a grouped environment. The agents evolve due to their social, autonomous, and self-learning behaviors. Moreover, the adjustment of environment helps the evolution of agents as well. Since the MSRCPSP-TT is a multi-objective optimization problem, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is used in different procedures of the MOMAOA. Another novelty of this paper is the application of TOPSIS in different procedures of the MOMAOA. These procedures are utilized for: (1) detecting the leader agent in each group, (2) detecting the global best leader agent, and (3) the global social behavior of the MOMAOA. The performance of the MOMAOA has been analyzed by solving several benchmark problems. The results of the MOMAOA have been validated through comparisons with three other meta-heuristics. The parameters of algorithms are determined by the Response Surface Methodology (RSM). The Kruskal–Wallis test is implemented to statistically analyze the efficiency of methods. Computational results reveal that the MOMAOA can beat the other three methods according to several testing metrics. Furthermore, the impact of transfer times on project’s duration and cost has been assessed. The investigations indicate that resource transfer times have significant impact on both objectives of the proposed model.

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3