Affiliation:
1. Department of Industrial Engineering, Anna University, Chennai, India
Abstract
In this work, we address the flexible job shop scheduling problem (FJSSP), which is a classification of the well-known job shop scheduling problem. This problem can be encountered in real-life applications such as automobile assembly, aeronautical, textile, and semiconductor manufacturing industries. To represent inherent uncertainties in the production process, we consider stochastic flexible job shop scheduling problem (SFJSSP) with operation processing times represented by random variables following a known probability distribution. To solve this stochastic combinatorial optimization problem we propose a simulation-optimization approach to minimize the expected makespan. Our approach employs Monte Carlo simulation integrated into a Jaya algorithm framework. Due to the unavailability of standard benchmark instances in SFJSSP, our algorithm is evaluated on an extensive set of well-known FJSSP benchmark instances that are extended to SFJSSP instances. Computational results demonstrate the performance of the algorithm at different variability levels through the use of reliability-based methods.
Funder
science and engineering research board
Subject
Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献