A Sim-Learnheuristic for the Team Orienteering Problem: Applications to Unmanned Aerial Vehicles

Author:

Peyman Mohammad1ORCID,Martin Xabier A.1ORCID,Panadero Javier2ORCID,Juan Angel A.1ORCID

Affiliation:

1. Research Center on Production Management and Engineering, Universitat Politècnica de València, Plaza Ferrandiz-Salvador, 03801 Alcoy, Spain

2. Department of Computer Architecture & Operating Systems, Universitat Autònoma de Barcelona, Carrer de les Sitges, 08193 Bellaterra, Spain

Abstract

In this paper, we introduce a novel sim-learnheuristic method designed to address the team orienteering problem (TOP) with a particular focus on its application in the context of unmanned aerial vehicles (UAVs). Unlike most prior research, which primarily focuses on the deterministic and stochastic versions of the TOP, our approach considers a hybrid scenario, which combines deterministic, stochastic, and dynamic characteristics. The TOP involves visiting a set of customers using a team of vehicles to maximize the total collected reward. However, this hybrid version becomes notably complex due to the presence of uncertain travel times with dynamically changing factors. Some travel times are stochastic, while others are subject to dynamic factors such as weather conditions and traffic congestion. Our novel approach combines a savings-based heuristic algorithm, Monte Carlo simulations, and a multiple regression model. This integration incorporates the stochastic and dynamic nature of travel times, considering various dynamic conditions, and generates high-quality solutions in short computational times for the presented problem.

Funder

Spanish Ministry of Science and Innovation

Horizon Europe program

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3