A Learnheuristic Algorithm Based on Thompson Sampling for the Heterogeneous and Dynamic Team Orienteering Problem

Author:

Uguina Antonio R.1ORCID,Gomez Juan F.1ORCID,Panadero Javier2ORCID,Martínez-Gavara Anna3ORCID,Juan Angel A.1ORCID

Affiliation:

1. Research Center on Production Management and Engineering, Universitat Politècnica de València, 03801 Alcoy, Spain

2. Department of Computer Architecture & Operating Systems, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

3. Statistics and Operational Research Department, Universitat de València, Doctor Moliner, 50, Burjassot, 46100 València, Spain

Abstract

The team orienteering problem (TOP) is a well-studied optimization challenge in the field of Operations Research, where multiple vehicles aim to maximize the total collected rewards within a given time limit by visiting a subset of nodes in a network. With the goal of including dynamic and uncertain conditions inherent in real-world transportation scenarios, we introduce a novel dynamic variant of the TOP that considers real-time changes in environmental conditions affecting reward acquisition at each node. Specifically, we model the dynamic nature of environmental factors—such as traffic congestion, weather conditions, and battery level of each vehicle—to reflect their impact on the probability of obtaining the reward when visiting each type of node in a heterogeneous network. To address this problem, a learnheuristic optimization framework is proposed. It combines a metaheuristic algorithm with Thompson sampling to make informed decisions in dynamic environments. Furthermore, we conduct empirical experiments to assess the impact of varying reward probabilities on resource allocation and route planning within the context of this dynamic TOP, where nodes might offer a different reward behavior depending upon the environmental conditions. Our numerical results indicate that the proposed learnheuristic algorithm outperforms static approaches, achieving up to 25% better performance in highly dynamic scenarios. Our findings highlight the effectiveness of our approach in adapting to dynamic conditions and optimizing decision-making processes in transportation systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3