Proxy models for evaluation of permeability, three-phase relative permeability, and capillary pressure curves from rate-transient data

Author:

Zhang Zhenzihao1ORCID,Ertekin Turgay2

Affiliation:

1. Department of Geoscience, University of Calgary, Canada

2. John and Willie Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, USA

Abstract

This study developed a data-driven forecasting tool that predicts petrophysical properties from rate-transient data. Traditional estimations of petrophysical properties, such as relative permeability (RP) and capillary pressure (CP), strongly rely on coring and laboratory measurements. Coring and laboratory measurements are typically conducted only in a small fraction of wells. To contend with this constraint, in this study, we develop artificial neural network (ANN)-based tools that predict the three-phase RP relationship, CP relationship, and formation permeability in the horizontal and vertical directions using the production rate and pressure data for black-oil reservoirs. Petrophysical properties are related to rate-transient data as they govern the fluid flow in oil/gas reservoirs. An ANN has been proven capable of mimicking any functional relationship with a finite number of discontinuities. To generate an ANN representing the functional relationship between rate-transient data and petrophysical properties, an ANN structure pool is first generated and trained. Cases covering a wide spectrum of properties are then generated and put into training. Training of ANNs in the pool and comparisons among their performance yield the desired ANN structure that performs the most effectively among the ANNs in the pool. The developed tool is validated with blind tests and a synthetic field case. Reasonable predictions for the field cases are obtained. Within a fraction of second, the developed ANNs infer accurate characteristics of RP and CP for three phases as well as residual saturation, critical gas saturation, connate water saturation, and horizontal permeability with a small margin of error. The predicted RP and CP relationship can be generated and applied in history matching and reservoir modeling. Moreover, this tool can spare coring expenses and prolonged experiments in most of the field analysis. The developed ANNs predict the characteristics of three-phase RP and CP data, connate water saturation, residual oil saturation, and critical gas saturation using rate-transient data. For cases fulfilling the requirement of the tool, the proposed technique improves reservoir description while reducing expenses and time associated with coring and laboratory experiments at the same time.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3