Graphical Techniques for Determining Relative Permeability From Displacement Experiments

Author:

Jones S.C.1,Roszelle W.O.1

Affiliation:

1. Marathon Oil Co.

Abstract

This paper presents graphical constructions that simplify the calculation of relative permeability from displacement data. These constructions convert raw data to relative permeability in a less tedious, more accurate manner than the usual computations. Fractional-flow saturation curves derived from waterflood displacements are always concave downward and never yield multiple-value saturations. Introduction To find oil and water relative permeabilities by the displacement or unsteady-state method, a small linear core usually is saturated with water, then oilflooded to irreducible water saturation. Subsequently, the core is waterflooded, and during the process, pressure drop (either constant or variable) across the entire core and water injection rate (constant or variable) are determined. Effluent fractions are collected and the amount of water and oil in each is measured. Augmented by the absolute permeability and pore volume of the core and by oil and permeability and pore volume of the core and by oil and water viscosities, these data are sufficient to develop relative permeability curves. The average saturation in the core at any time in the flood can be found from an over-all material balance. However, to calculate relative permeability, the saturation history at some point in the core must be determined, not the average saturation history. The Welge equation yields saturations at the effluent end of the core when the average saturation history is known. Similarly, to compute relative permeability, the point pressure gradient per unit injection rate is needed, not the pressure gradient per unit injection rate is needed, not the average. The equation developed by Johnson et al. converts average relative injectivity to a point value, accomplishing the required task. While the equations of Welge and Johnson et al. have been used successfully for years, they require tedious computation and are subject to error because of the evaluation of derivatives. The graphical techniques presented in this study are equivalent to these equations, but are easier to use and can give a more accurate evaluation of relative permeability. Lefebvre du Prey has presented graphical constructions based on curves of volume of oil produced vs time and pressure drop vs time to develop the required point functions. These constructions are limited to constant rate displacements. The constructions presented here are general and apply to constant rate, constant pressure, or variable rate-pressure displacements. Constant-rate and constant-pressure examples are given to help clarify the methods. The graphical techniques make it easy to see that double or triple saturation values, so extensively discussed in the past simply do not result from the fractional flow curve generated by a single displacement, such as a waterflood or an oilflood. Theory Ignoring gravity effects and capillary pressure, water and oil relative permeabilities (expressed as functions of saturation) are (1) (2) To use these equations, the fractional flow of water or oil and effective viscosity, lambda-1, must be determined as functions of saturation. JPT P. 807

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3