Model updating of suspended-dome using artificial neural networks

Author:

Guo Jiamin1,Zhao Xiaoxu2,Guo Junhua1,Yuan Xingfei3,Dong Shilin3,Xiong Zhixin1

Affiliation:

1. School of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China

2. China Nuclear Power Technology Research Institute, Shenzhen, China

3. Space Structures Research Center, Zhejiang University, Hangzhou, China

Abstract

Differences between the practical suspended-dome and the corresponding numerical model are inevitable. To reduce the existing discrepancy, model updating of a suspended-dome was investigated using the back-propagation network in the article. The article first proposed a method to increase the prediction precision of back-propagation network: reducing the range of the training data for the back-propagation network according to the previous prediction results continuously. Then, some parameters that can be measured are updated by the corresponding measured values directly, and other parameters that cannot be directly measured are updated by the corresponding prediction values from back-propagation network. The results indicate that the updated model can predict the experimental model perfectly, and back-propagation network is effective and accurate to predict the given parameters that cannot be described by an algorithm. The results also confirm that the proposed method to increase the prediction precision of back-propagation network is valid.

Funder

Research Innovation Projects of 2013 Shanghai Postgraduate

Chinese Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3