Cable Force Identification and Finite Element Model Optimization of Cable-Stayed Bridges Based on Backpropagation Neural Networks

Author:

Ouyang Ping1,Shen Quanxi2,Xie Xiaoli1,Zhu Wanxu2

Affiliation:

1. Guangxi University, Nanning, Guangxi, China

2. Guilin University of Technology, Guilin, China

Abstract

Cable force is an essential indicator for evaluating the health status of a bridge. To realize the real-time and accurate cable force monitoring of the whole bridge, models were constructed using backpropagation neural networks combined with a finite element model of a cable-stayed bridge. This strategy obtained the cable forces in the stay cables without sensors, the elastic moduli of the stay cables, and the elastic modulus of the bridge girder concrete. The results showed that the average differences in the forces in the 75 stay cables without sensors obtained from our identification model and those measured in 21 stay cables with sensors presented a maximum discrepancy of 0.17%. Then, the structural parameters from measured data were used to update the finite element model. All the results calculated via the cable force formula presented an error of about ±1% compared to the measured results. This research demonstrated that the models for identifying cable forces and bridge parameters provide a valuable and novel approach to force identification in stay cables without sensors.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3