Coupled responses of stay cables under the combined rain–wind and support excitations by theoretical analyses

Author:

Li Shouying1ORCID,Wang Yuanyuan1,Zeng Qingyu1,Chen Zhengqing1

Affiliation:

1. Key Laboratory for Wind and Bridge Engineering of Hunan Province, College of Civil Engineering, Hunan University, Changsha, China

Abstract

Stay cables on several cable-stayed bridges all over the world have been found to experience rain-wind-induced vibrations under the combined action of rain and wind. Meanwhile, the bridge deck might also have obvious oscillation under the wind and/or traffic loads. The coupled responses of a stay cable under the combined rain–wind and support excitations are numerically investigated in this article. The equations of motion of a three-dimensional continuous stay cable are derived by considering the high-order nonlinear components of the dynamic cable tension, together with the equation of motion of the rivulet on the cable surface. The forces induced by rain–wind excitation are determined by the quasi-steady theory, and the support excitation is achieved by the boundary condition. The coupled equations of the cable and the rivulet are numerically solved by using the finite difference method and the fourth-order Runge–Kutta method, respectively. The numerical results show that the high-order nonlinear components of the dynamic cable tension should be taken into account to numerically reproduce the parametric vibration of the stay cable, whereas they hardly have any effects on the rain-wind-induced vibration and the resonance vibration of the stay cable. The responses of stay cable under vertical support oscillation only and the rain–wind excitation only obtained from this study agree well with the literature results. Compared with the results induced by single-source excitation, the cable response amplitude under the combined excitations is smaller than that induced only by support excitation and larger than that induced only by rain–wind excitation. The rivulet is prone to be thrown from the cable surface if the parametric vibration of the stay cable is evoked.

Funder

national key research and development program of china stem cell and translational research

National Natural Science Foundation of China

national basic research program of china

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3