Coupled Parametric Vibration Model and Response Analysis of Single Beam and Double Cable Under Deterministic Harmonic and Random Excitation

Author:

Wang Feng12ORCID,Zhou Huahua2ORCID,Chen Xinghua12ORCID,Xiang Hongjia2ORCID

Affiliation:

1. Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang, P. R. China

2. College of Civil Engineering and Architecture, China Three Gorges University, Yichang, P. R. China

Abstract

In order to reveal the coupling parametric vibration characteristics of stay cables under combined excitation, considering the effects of cable geometric nonlinearity, inclination and the cooperative vibration of adjacent cables and bridge deck beams, a single-beam–double-cable coupled parametric vibration model excited by Gaussian white noise and deterministic harmonic excitation is established, and the coupled motion equations are derived. The Milstein–Platen method is used to directly obtain the coupled random vibration time history of the single-beam–double-cable structure, and an iterative method is proposed to counter the influence of the parametric diffusion coefficient on the numerical format. By comparing with the finite element method and the Monte Carlo numerical simulation method, the accuracy of the Milstein–Platen method in solving the vibration time history of cable–beam coupling parameters under combined excitation is first verified. Then the random displacement, power spectral density and probability density variation of the cable and beam under the combined excitation of different intensities are analyzed from the angle of random orbit. The results show that under the joint action of deterministic harmonics and random excitation, the time–domain, frequency, and probability characteristics of the single-beam–double-cable coupling system are greatly affected by the Gaussian white noise excitation proportion coefficient, and the degree of influence is different. In addition, compared with the single cable model, the vibration analysis results of the coupling model considering multiple stay cables are more reasonable.

Funder

National Natural Science Foundation of China

111 Project of Hubei Province

Opening Fund of the Hubei Key Laboratory of Disaster Prevention and Mitigation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3