Using end buckles to improve debonding resistance in FRP-bonded precracked RC beams

Author:

Zhou Chao-Yang1,Chen Heng-Yi1,Wang Yi1ORCID,He Xue-Jun1

Affiliation:

1. School of Civil Engineering, Central South University, Changsha, China

Abstract

The strengthening effect of reinforced concrete (RC) members externally bonded (EB) with fiber reinforced polymer (FRP) laminates is significantly affected by interfacial debonding failure. To improve the connection between FRP sheets and concrete, a novel type of anchor device for FRP sheets called buckle was proposed in this study. This device can effectively lock the end of the sheet using a patented method of wrapping. In addition to conventional external bonding, bolts were installed on the buckles to form hybrid anchored (HA) FRP sheet. To verify the effectiveness of this new method, a precracked RC beam was prepared in comparison with two undamaged beams strengthened with EB or HA FRP sheets. As observed, end buckles can limit the development of cracks regardless of initial cracking. Despite the occurrence of intermediate debonding due to initial cracks, both the ultimate capacity and failure ductility were significantly improved. Owing to the end buckles, the debonding resistance was excellent, and the initial cracking of the beam hardly affected the strengthening effect. In addition, existing formulas were used to calculate the lower limit of the ultimate load of the specimen strengthened with HA FRP, which was still higher than that of the specimen strengthened by EB FRP. Therefore, the results confirmed that the debonding resistance was greatly enhanced due to the locking of the FRP sheet via end buckles, and the proposed method is useful to guarantee the strengthening effect.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3