Nonlinear bond-slip model for fiber-reinforced polymer laminates externally bonded to thermally damaged concrete

Author:

Lv Heng-Da12,Xie Wen-Jian12,Gao Wan-Yang12ORCID

Affiliation:

1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China

2. Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China

Abstract

This paper presents a novel nonlinear local bond-slip model for fiber-reinforced polymer (FRP) laminates externally bonded to thermally damaged concrete substrates. The proposed model is an extension of an existing two-parameter bond-slip model and incorporates two key parameters including interfacial fracture energy ([Formula: see text]) and interfacial brittleness index ([Formula: see text]). To study the variations of [Formula: see text] and [Formula: see text] with different thermal damage levels of the concrete substrate, an extensive experimental database of shear tests on FRP-to-thermally damaged concrete bonded joints was collected from the existing literature. The [Formula: see text] values were calculated from the peak pull loads with proper consideration of the bond length and width effects, while the [Formula: see text] values were obtained by least-squares regression analysis using experimental load-displacement curves or measured strain distributions in the FRP laminates. The results have indicated that the [Formula: see text] values initially exhibit a slight increase accompanied by mild thermal damage of the concrete substrate after exposure to moderately high temperatures; however, these values significantly decrease when the exposure temperature exceeds 300°C. The [Formula: see text] values initially decrease with high-temperature exposure and stabilize at around 50% of the initial values when the temperatures reach around 400°C. Despite the inherent variability in the test database, the proposed temperature-dependent bond-slip model has demonstrated its accuracy, as demonstrated by the comparisons between the theoretical predictions generated by the model and the corresponding shear test results. This interfacial bond-slip model is expected to serve as a constitutive law to characterize the bond behavior between externally bonded FRP laminates and thermally damaged concrete substrate, thus facilitating the practical application of high-performance FRP composites in the repair and strengthening of thermally or fire-damaged RC members.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai in China

Nonmetallic Excellence and Innovation Center for Building Materials

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3