Cyclic loading tests and numerical simulations of an assembled X-shaped flexural steel damper

Author:

Qiu Canxing1ORCID,Huang Tianyi1,Liu Jiawang1

Affiliation:

1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing, China

Abstract

This paper proposes an assembled X-shaped flexural steel damper. Welding is waived for the novel damper. As the kernel element of the damper, the X-shaped flexural steel plates have the advantages of ease of installation and replacement if necessary. In the analytical part, the effective height of the flexural steel plate was suggested, and then, the yield displacement, yield load and initial stiffness of the damper were derived. The proof-of-concept cyclic loading test was conducted using one reduced-scale specimen within a four-bar linkage experimental setup. The hysteretic performance indexes, including strength, stiffness and energy dissipation, were quantified. The high-fidelity finite element (FE) models were established by ABAQUS. The parametric study was further conducted based on the verified FE model. The considered parameters were the height and thickness of the steel plates. The testing results indicate that the proposed damper has plump hysteretic curve with good energy dissipation capacity and excellent ductility, although slight slip behavior can be found due to the gap caused by the assembling process. The results obtained from analytical method and numerical model are in good agreement with the experimental data. The results of parametric analysis show that the numerical results well agree with analytical predictions, indicating the numerical model can reflect the mechanical behavior of AXSFD. A benchmark frame building was selected to demonstrate the seismic control efficacy of the damper. The nonlinear time history analysis results indicate that the damper reduced both peak and residual interstory drift ratios for the protected structure.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3