Study on mechanical properties of high damping viscoelastic dampers

Author:

Chen Yun1,Chen Chao1,Ma Qianqian1,Jiang Huanjun2ORCID,Wan Zhiwei2

Affiliation:

1. College of Civil Engineering and Architecture, Hainan University, Haikou, China

2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China

Abstract

The mechanical properties of the viscoelastic damper made of high damping rubber produced in China are investigated in order to provide the basis for its application. At first, the test on material properties of high damping rubber is conducted. The Mooney–Rivlin model, the Yeoh model and the Prony series are applied for simulating the nonlinear behavior of the high damping rubber with the aid of software ABAQUS. Then, three viscoelastic dampers with different sizes are tested under cyclic loading. The effects of strain amplitude and loading frequency on hysteretic behavior of dampers are analyzed. Viscoelastic dampers possess large deformation capability, stable energy-dissipation capacity and good fatigue-resisting property. The effect of strain amplitude is much more significant than loading frequency. The hysteretic behavior of the dampers is simulated by the Bouc–Wen model and the model of the equivalent stiffness and damping, respectively. The prediction results by using the Bouc–Wen model are in good agreement with the experimental results, which indicates that the Bouc–Wen model is applicable to simulate the mechanical properties of high damping viscoelastic dampers with a wide range of shear strain. As to the model of equivalent stiffness and damping, it has the advantages of clear concept and simple calculation. However, the good accuracy of prediction can be obtained only when the shear strain is not greater than 60%.

Funder

national basic research program of china (973 program)

Hainan Key R&D Program

national natural science foundation of china

hainan association for science and technology

hainan university

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3