Section bending resistance of new Hybrid Double-I-Box Beams

Author:

Deepak MS1ORCID,Shanthi VM2

Affiliation:

1. Department of Civil Engineering, Government College of Technology, Coimbatore, Coimbatore, India

2. Department of Civil Engineering, Government College of Engineering, Srirangam, Srirangam, India

Abstract

This article contains original works of testing and numerical validation on section bending resistance of new innovative built-up thin-walled metal Hybrid Double-I-Box Beam sections when subjected to local buckling. The cross section of Hybrid Double-I-Box Beam section is distinctive, which has advantages of both an ‘I’ section and a closed-box section. A total of 24 sections in three series that includes 8 homogeneous sections and 16 hybrid sections were tested under four-point bending. The varying parameters considered in the test specimens were as follows: first, hybrid parameter ratio, that is, yield strengths of flange steel to web steel (Φh = fyf/fyw); second, the ratio of breadth to the overall depth (B/D) of the section; and third, the flange thickness (tf). The moment-resisting capacity of these built-up sections are high due to the presence of more material at the flanges. The closed box-web portion provides higher torsional rigidity. From the test results, it was found that the hybrid sections have higher bending resistance capacity than the homogeneous sections, so technically gains more strength to weight. The increase in B/D ratio gained the increase in both major and minor axis bending resistance. The intermediate flange stiffener which alters the flange plate slenderness (λpf) had a significant effect on the local buckling resistance of the flange plate. Verification of numerical models followed by a parametric study was undertaken using ABAQUS finite element analysis software. The test results obtained were compared with the predicted design moment of resistance (Mc,Rd) as per Eurocode design standards EN 1993-1-3: 2006-Design of Steel Structures for Cold-Formed Steel Members and Sheeting and the adequacy is confirmed.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3