Fatigue analysis and strengthening measure for longitudinal steel truss diaphragms in a cable-stayed bridge

Author:

Fan Ziyuan1ORCID,Ren Yuan2,Li Yi3,Song Yuyu4,Deng Chao2,Xu Xiang2ORCID,Huang Qiao2

Affiliation:

1. School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China

2. School of Transportation, Southeast University, Nanjing, China

3. Bay Area Super Bridge Maintenance Technology Center, Guangdong Provincial Highway Construction Co.,Ltd., Guangzhou, China

4. China Railway 25th Bureau Group No.5 Engineering Co.,Ltd., Qingdao, China

Abstract

For some long span cable supported bridges, the longitudinal diaphragms in main girder are designed as steel truss to reduce structural self-weight. However, unanticipated fatigue cracking in critical details of longitudinal steel truss diaphragm may occur after only a few years of service, resulting in stiffness weakening and stress redistribution. Based on an actual cable-stayed bridge, this paper presents a fatigue analysis of longitudinal steel truss diaphragms and provide an effective strengthening measure to elongate the fatigue life. Using traffic information from bridge toll station, the fatigue vehicle models were established. Then, a multi-scale finite element (FE) model was developed to help determining critical details of potential cracking and calculating the vehicle induced stress. After obtaining the required parameters, fatigue life of the specific critical detail was estimated base on damage accumulation law. The result agrees well with field observation. To ensure the performance of steel girder, the strengthening measure that replace diagonal tubes in longitudinal steel truss diaphragm with bolted channel steels was proposed and then applied. The assessment result indicated that the provided strengthening measure achieves satisfactory effects. It can also provide experience and partial reference for maintenance of similar structures.

Funder

Academician Special Science Research Project of CCCC

National Key Research and Development Program of China

General Science Research Project of Department of Education of Zhejiang Province

Science Foundation of Zhejiang Sci-Tech University

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3