Stress monitoring and impact bearing capacity of circular concrete-filled steel tubular short columns under axial impact loads

Author:

Li Zhao12ORCID,Gao Jingwei2,Xu Jindong1,Du Guofeng1

Affiliation:

1. School of Urban Construction, Yangtze University, Jingzhou, China

2. Hubei Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, China

Abstract

Compared with the traditional reinforced concrete columns, the concrete-filled steel tubular columns with a better restraint effect of steel tube on core concrete showed higher bearing capacity and ductility under static loads. However, except static loads, concrete-filled steel tubular columns are commonly exposed to the extreme dynamic loads including earthquake, explosion, and impact. The study on dynamic behavior of concrete-filled steel tubular columns is extremely significant to ensure their safety against such dynamic loads. In this article, a polyvinylidene fluoride piezoelectric smart sensor was proposed to monitor the axial impact bearing capacity of specimen based on stress monitoring under impact loads. The concrete-filled steel tubular columns with smart sensor embedded were tested, which considered the effects of both hammer impact heights and steel tube thickness on the axial impact bearing capacity. The impact bearing capacity calculated based on the monitoring results of polyvinylidene fluoride sensor is in good agreement with the measured values, which verifies the feasibility of this method. Moreover, it is found that the failure mode of concrete-filled steel tubular short columns is the local tearing failure or local buckling. In addition, non-linear finite element models were also established to study the effect of different parameters on the axial bearing capacity. The simplified formula for calculating the axial impact bearing capacity of concrete-filled steel tubular short columns was proposed based on the large amount verified model. Through the comparison between the calculation value and the test value, the formula is found to well reflect the axial impact bearing capacity of concrete-filled steel tubular short columns, which provides a reference for similar research.

Funder

national natural science foundation of china

natural science foundation of hubei province

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3