Wavelet-based multi-scale finite element modeling and modal identification for structural damage detection

Author:

He Wen-Yu1,Zhu Songye2,Chen Zhi-Wei3

Affiliation:

1. School of Civil Engineering, Hefei University of Technology, Hefei, China

2. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong

3. School of Architecture and Civil Engineering, Xiamen University, Xiamen, China

Abstract

Wavelet techniques enable multi-resolution analysis that can represent a function (either field or signal function) in a multi-scale manner. This article presents a damage detection method with dynamically changed scales in both temporal and spatial domains, by taking advantage of the wavelet-based multi-resolution analysis. This method combines a wavelet-based finite element model (WFEM) that employs B-spline wavelet as shape functions and wavelet-based modal identification method to detect structural damage progressively. High-fidelity modal information can be computed or identified with minimized computation cost by lifting the wavelet scales in the wavelet-based finite element model and in signal processing individually according to the actual requirements. Numerical examples demonstrate that the accuracy of damage detection is improved considerably by this lifting strategy during the damage detection process. Besides, fewer degrees of freedom are involved in the wavelet-based finite element model than those of traditional finite element method. The computational efficiency can be improved to large extent and computation resources can be utilized more rationally using the proposed multi-scale approach.

Funder

Research Institute for Sustainable Urban Development

Innovation and Technology Commission of the HKSAR Government

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3