Reconstruction of full-field complex deformed shapes of thin-walled special-section beam structures based on in situ strain measurement

Author:

Xu Hao12ORCID,Zhou Qi3,Yang Lei1,Liu Minjing1,Gao Dongyue4,Wu Zhanjun1,Cao Maosen5

Affiliation:

1. School of Aeronautics and Astronautics, Faculty of Vehicle Engineering and Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, P.R. China

2. Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA

3. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, P.R. China

4. School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou, P.R. China

5. Department of Engineering Mechanics, Hohai University, Nanjing, P.R. China

Abstract

This study proposed a method capable of reconstructing complex deformations of thin-walled special-section beam structures subjected to highly coupled loading cases, in terms of the combination of tension/compression, biaxial bending, and warping torsion. The complex beam deformation was decoupled, depending on axial strain measurement strategy on beam surface, and leads to reconstructed full-field displacements (deformed shapes) as the linear superposition of deformations subject to individual loading types. Full-filed strain/stress distributions can then be derived based on the reconstructed displacements. Particular efforts were focused on reconstructing beam deformation subject to warping torsion, where both rotations angles and warping displacements across the beam cross-section and along the beam length were identified precisely. As a proof-of-concept validation, the effectiveness of the method was examined using finite element analysis, where the deformed shape of a thin-walled hat-section beam under the coupling between uniaxial bending and warping torsion was reconstructed., Experiments were conducted subsequently to reconstruct deformation of an aluminum hat-section beam using distributed optical fiber sensors for the measurement of axial strains on the beam surface. The reconstructed full-field deformed shapes of the beam were compared with the three-dimensional displacement signals captured using a non-contact digital image correlation system. The effectiveness of the proposed methodology for complex deformation reconstruction is possible to be extended to a variety of thin-walled beam-type structures which are typical in civil and aerospace engineering, showing potential contributions in fields such as on-line structural health monitoring and active structural control.

Funder

National Natural Science Foundation of China

fundamental research funds for the central universities

national key research and development program of china stem cell and translational research

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3