New extended grillage methods for the practical and precise modeling of concrete box-girder bridges

Author:

Sun Yuan1,Dai Shucai2,Xu Dong3ORCID,Zhu Hongping1,Wang Xiaoming4

Affiliation:

1. School of Civil Engineering & Mechanics, Huazhong University of Science and Technology, Wuhan, P.R. China

2. SGIDI Engineering Consulting (group) Co., Ltd., Shanghai, P.R. China

3. Department of Bridge Engineering, School of Civil Engineering, Tongji University, Shanghai, P.R. China

4. Key Laboratory for Bridge and Tunnel of Shanxi Province, Chang’an University, Xi’an, P.R. China

Abstract

The Hambly plane grillage method has been regarded as one of the classic numerical methods in the design field for modeling wide box-girder bridge structures. However, when it comes to the in-depth design applications, its strict division rules and insufficient mechanical explanations often make engineers inconvenient or puzzled at bridge modeling. This article investigates whether this method may be extended to become more adaptable for the design of current concrete box-girder bridge structures in consideration of both convenience and precision. To this end, the defects of Hambly plane grillage method are recognized, and new extended grillage methods, including the single-layer folding surface grillage and spatial grillage, are proposed respectively, to deal with different bridge design objects completely in a beam-oriented environment. The former allows freer cross-sectional division by breaking the basic rule of Hambly plane grillage method to include longitudinal separate-type beam components for a better exhibition of shear lag effects. The latter emphasizes a complete consideration of spatial behavior, including the easily missed in-plane effects of the top and bottom plates. The effectiveness of the methods are demonstrated by comparison case studies in some benchmark models and by a discussion of their applications.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3