Mechanical behavior improving study of concrete deck of main beam at pylon root of composite beam cable-stayed bridge

Author:

Qi Tianyu1ORCID,Wang Chao2ORCID,Pan Xiang3ORCID,Han Guining3ORCID

Affiliation:

1. Hubei University of Technology, School of Civil Engineering, Architecture and Environment,Wuhan.Hubei, China

2. Hubei University of Technology, School of Civil Engineering, Architecture and Environment, KeyLaboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education,Wuhan. Hubei, China

3. Hubei University of Technology, School of Civil Engineering, Architecture and Environment,Wuhan. Hubei, China

Abstract

Steel-concrete composite beam has been increasingly applied to large span cable-stayed bridges. It takes full advantage of the material properties of steel and concrete. However, the concrete deck bears tension in the negative moment zone, such as zero block, which is disadvantageous to structures. Aiming at this problem, a finite element model of the zero block in the negative moment zone of a semi-floating cable-stayed bridge is built, and the local mechanical performance of the bridge deck under completed status is studied. Based on the analysis results, three improvement measures have been proposed. The improvement effect of each method and composed of three methods has been studied. The numerical results show that the whole zero block zone is in the compressed state under the combined action of the bending moment and axial force of the stay cable. However, the local negative moment effect in the zero block zone is very prominent under the support of the diaphragm plate. Removing parts of the diaphragm plate at the bearing position can significantly improve local mechanical behavior in the concrete deck, which transfers the local support to the adjacent two diaphragm plates. The composed improvement effect is prominent when the three measures are adopted simultaneously.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3