Development of stiffness-adjustable tuned mass dampers for frequency retuning

Author:

Wang Zhihao1ORCID,Gao Hui1,Wang Hao2,Chen Zhengqing3

Affiliation:

1. School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, China

2. Key Laboratory of Concrete and Prestressed Concrete Structure of Ministry of Education, Southeast University, Nanjing, China

3. Key Laboratory for Wind and Bridge Engineering of Hunan Province, Hunan University, Changsha, China

Abstract

Tuned mass damper is an attractive strategy to mitigate the vibration of civil engineering structures. However, the performance of a tuned mass damper may show a significant loss due to the frequency detuning effect. Hence, an inerter-induced negative stiffness (apparent mass effect) and magnetic-force-induced positive/negative stiffness are proposed to integrate a stiffness-adjustable vertical tuned mass damper and pendulum tuned mass damper for frequency retuning, respectively. Based on the established differential equations of motion for a vertical tuned mass damper coupled with an inerter and a pendulum tuned mass damper integrated with a magnetic-force-induced positive-/negative-stiffness device, the frequency retuning principles of a vertical tuned mass damper and a pendulum tuned mass damper are, respectively, demonstrated. The frequency retuning strategies for both the vertical tuned mass damper and the pendulum tuned mass damper are confirmed and clarified by model tests. Furthermore, the performance of a retuned vertical tuned mass damper for mitigating vibration of a linear undamped single-degree-of-freedom primary structure is discussed, and the effects of the amplitudes of the pendulum tuned mass damper on magnetic-force-induced stiffness as well as the frequency of the pendulum tuned mass damper are also investigated. Both theoretical analysis and experimental investigations show that the proposed frequency tuning methodologies of tuned mass dampers are efficient and cost-effective with relatively simple configurations.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3