Numerical study on impact resistance of rubberised concrete roadside barrier

Author:

Pan Lei1,Hao Hong2,Cui Jian3ORCID,Pham Thong M4ORCID

Affiliation:

1. Guangzhou University-Curtin Universit Joint Research Centre for Structural Monitoring and Protection against Multi-Dynamic Hazards, School of Civil Engineering, Guangzhou University, China

2. Guangzhou University-Curtin University Joint Research Centre for Structural Monitoring and Protection against Multi-Dynamic Hazards, School of Civil and Mechanical Engineering, Curtin University, Perth, WA, Australia

3. School of Civil Engineering, Tianjin University, China

4. School of Civil and Mechanical Engineering, Curtin University, Perth, WA, Australia

Abstract

As an environmentally-friendly material, rubberised concrete has attracted a lot of attentions and researches in recent years. However, because of the addition of rubber crumbs, the strength and modulus of rubberised concrete are low as compared to normal concrete, which limit the wide applications of this material in construction of load-bearing structures. Considering the good deformation and impact resistance ability of rubberised concrete, many researchers have suggested that rubberised concrete material could be used to construct roadside barriers, but the research on rubberised concrete barrier subjected to vehicle collision is very limited. This paper studies the feasibility of application of this green material to make roadside barriers to resist vehicle impact. Numerical models of F-type barriers with A-grade and SS-grade made of rubberised concrete and normal concrete are established. The validities of the numerical models are verified by laboratory impact tests available in literature. The collision of the vehicle with the normal concrete barrier and the rubberised concrete barrier are simulated by the verified numerical models. The results show that the rubberised concrete barrier not only meets the safety requirements for roadside barriers, but also reduces the impact force acting on the vehicle and hence reduces the vehicle damage and risk of the drivers and passengers as compared with the normal concrete barrier. The results demonstrate the great application potentials of this green material for constructing roadside barriers and structures.

Funder

Guangzhou University

China National Nature Science Foundation

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3